Active cochlear amplification is dependent on supporting cell gap junctions

نویسندگان

  • Yan Zhu
  • Chun Liang
  • Jin Chen
  • Liang Zong
  • Guang-Di Chen
  • Hong-Bo Zhao
چکیده

Mammalian hearing relies upon active cochlear mechanics, which arises from outer hair cell electromotility and hair bundle movement, to amplify acoustic stimulations increasing hearing sensitivity and frequency selectivity. Here we describe the novel finding that gap junctions between cochlear supporting cells also have a critical role in active cochlear amplification in vivo. We find that targeted-deletion of connexin 26 in Deiters cells and outer pillar cells, which constrain outer hair cells standing on the basilar membrane, causes a leftward shift in outer hair cell electromotility towards hyperpolarization, and reduces active cochlear amplification with hearing loss. Coincident with large reduction in distortion product otoacoustic emission and severe hearing loss at high frequencies, the shift is larger in shorter outer hair cells. Our study demonstrates that active cochlear amplification in vivo is dependent on supporting cell gap junctions. These new findings also show that connexin 26 deficiency can reduce active cochlear amplification to induce hearing loss.

منابع مشابه

A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics

Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the ba...

متن کامل

Corrigendum: A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics

Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the ba...

متن کامل

Modulation of Outer Hair Cell Electromotility by Cochlear Supporting Cells and Gap Junctions

Outer hair cell (OHC) or prestin-based electromotility is an active cochlear amplifier in the mammalian inner ear that can increase hearing sensitivity and frequency selectivity. In situ, Deiters supporting cells are well-coupled by gap junctions and constrain OHCs standing on the basilar membrane. Here, we report that both electrical and mechanical stimulations in Deiters cells (DCs) can modul...

متن کامل

Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear.

Connexin gap junctions play an important role in hearing function, but the mechanism by which this contribution occurs is unknown. Connexins in the cochlea are expressed only in supporting cells; no connexin expression occurs in auditory sensory hair cells. A gap junctional channel is formed by two hemichannels. Here, we show that connexin hemichannels in the cochlea can release ATP at levels t...

متن کامل

Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea.

Gap junctional intercellular communication (GJIC) plays a major role in cochlear function. Recent evidence suggests that connexin 26 (Cx26) and Cx30 are the major constituent proteins of cochlear gap junction channels, possibly in a unique heteromeric configuration. We investigated the functional and structural properties of native cochlear gap junctions in rats, from birth to the onset of hear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013